DocumentCode :
29713
Title :
Lattice Codes for the Gaussian Relay Channel: Decode-and-Forward and Compress-and-Forward
Author :
Yiwei Song ; Devroye, Natasha
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of Illinois at Chicago, Chicago, IL, USA
Volume :
59
Issue :
8
fYear :
2013
fDate :
Aug. 2013
Firstpage :
4927
Lastpage :
4948
Abstract :
Lattice codes are known to achieve capacity in the Gaussian point-to-point channel, achieving the same rates as i.i.d. random Gaussian codebooks. Lattice codes are also known to outperform random codes for certain channel models that are able to exploit their linearity. In this paper, we show that lattice codes may be used to achieve the same performance as known i.i.d. Gaussian random coding techniques for the Gaussian relay channel, and show several examples of how this may be combined with the linearity of lattices codes in multisource relay networks. In particular, we present a nested lattice list decoding technique in which lattice codes are shown to achieve the decode-and-forward (DF) rate of single source, single destination Gaussian relay channels with one or more relays. We next present two examples of how this DF scheme may be combined with the linearity of lattice codes to achieve new rate regions which for some channel conditions outperform analogous known Gaussian random coding techniques in multisource relay channels. That is, we derive a new achievable rate region for the two-way relay channel with direct links and compare it to existing schemes, and derive a new achievable rate region for the multiple access relay channel. We furthermore present a lattice compress-and-forward (CF) scheme for the Gaussian relay channel which exploits a lattice Wyner-Ziv binning scheme and achieves the same rate as the Cover-El Gamal CF rate evaluated for Gaussian random codes. These results suggest that structured/lattice codes may be used to mimic, and sometimes outperform, random Gaussian codes in general Gaussian networks.
Keywords :
Gaussian channels; decode and forward communication; relay networks (telecommunication); wireless channels; CF scheme; Gaussian networks; Gaussian point-to-point channel; Gaussian random coding techniques; Gaussian relay channel; Wyner-Ziv binning scheme; compress-and-forward; decode-and-forward; decoding technique; direct links; lattice codes; multiple access relay channel; multisource relay channels; multisource relay networks; random Gaussian codebooks; Decoding; Encoding; Lattices; Linearity; Receivers; Relays; Vectors; Compress and forward; Gaussian relay channel; decode and forward; lattice codes; relay channel;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2013.2259139
Filename :
6506106
Link To Document :
بازگشت