• DocumentCode
    2971836
  • Title

    On-body to on-body channel characterization

  • Author

    Franco, Fabio Di ; Tachtatzis, Christos ; Graham, Ben ; Tracey, David ; Timmons, Nick F. ; Morrison, Jim

  • Author_Institution
    WiSAR Lab., Letterkenny Inst. of Technol., Letterkenny, Ireland
  • fYear
    2011
  • fDate
    28-31 Oct. 2011
  • Firstpage
    908
  • Lastpage
    911
  • Abstract
    Interest in on-body communication channels is growing as the use of wireless devices increases in medical, consumer and military sensor applications. This paper presents an experimental investigation and analysis of the narrowband on-body propagation channel. This analysis considers each of the factors affecting the channel during a range of stationary and motion activities in different environments with actual wireless mote devices on the body. Use of such motes allows greater freedom in the subject´s movements and the inclusion of real-world indoor and outdoor environments in a test sequence. This paper identifies and analyses the effect of the different components of the signal propagation (mean propagation path gain, large-scale fading and small-scale fading) and the cause of the losses and variation due to activities, positions or environmental factors. Our results show the effect on the received signal and the impact of voluntary and involuntary movements, which cause shadowing effects. The analysis also allows us to identify sensor positions on the body that are more reliable and those positions that may require a relay or those that may be suitable for acting as a relay.
  • Keywords
    biocommunications; body area networks; electromagnetic wave propagation; telecommunication channels; large-scale fading; mean propagation path gain; narrowband on-body propagation channel; on-body communication channels; on-body to on-body channel characterization; signal propagation; small-scale fading; wireless devices; Body area networks; Fading; Gain; Hip; Legged locomotion; Receivers; Shadow mapping; Body Area Networks; Channel Characterisation; Embedded system design; channel propagation;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Sensors, 2011 IEEE
  • Conference_Location
    Limerick
  • ISSN
    1930-0395
  • Print_ISBN
    978-1-4244-9290-9
  • Type

    conf

  • DOI
    10.1109/ICSENS.2011.6127262
  • Filename
    6127262