DocumentCode :
2974428
Title :
Hamiltonian lifts and optimal trajectories
Author :
Sussman, H.J.
Author_Institution :
Dept. of Math., Rutgers Univ., New Brunswick, NJ
fYear :
1988
fDate :
7-9 Dec 1988
Firstpage :
1182
Abstract :
The Pontryagin maximum principle says that, if γ is a boundary trajectory of a control system Σ, then γ is a projection of a particular kind of trajectory-a Hamiltonian-minimizing trajectory-of another kind of system, the Hamiltonian lift of Σ. This point of view is useful to prove regularity theorems for optimal trajectories. The author illustrates this by describing some of these theorems, and proving one of them in detail
Keywords :
maximum principle; optimal control; Hamiltonian lift; Pontryagin maximum principle; boundary trajectory; optimal control; optimal trajectories; Control systems; Cost function; Mathematics; Optimal control; Polynomials; Portable media players; Q measurement;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1988., Proceedings of the 27th IEEE Conference on
Conference_Location :
Austin, TX
Type :
conf
DOI :
10.1109/CDC.1988.194508
Filename :
194508
Link To Document :
بازگشت