Title :
An optimization algorithm with probabilistic estimation
Author :
Yan, D. ; Mukai, H.
Author_Institution :
Dept. of Syst. Sci. & Math., Washington Univ., St. Louis, MO, USA
Abstract :
The authors present a stochastic optimization algorithm based on the idea of the gradient method which incorporates a novel adaptive-precision technique. Unlike recent methods, the proposed algorithm adaptively selects the precision without any need for prior knowledge on the speed of convergence of the generated sequence. The algorithm can avoid increasing the estimation precision unnecessarily, yet it retains its favorable convergence properties. In fact, it tries to maintain a nice balance between the requirements for computational accuracy and those for computational expediency. The authors present two types of convergence results delineating under what assumptions various kinds of convergence can be obtained for the proposed algorithm. They also present a parallel version of the proposed algorithm
Keywords :
computational complexity; convergence; parallel algorithms; probability; stochastic programming; adaptive-precision technique; computational accuracy; computational expediency; convergence; generated sequence; gradient method; probabilistic estimation; stochastic optimization algorithm; Algorithm design and analysis; Approximation algorithms; Approximation methods; Convergence; Cost function; Gradient methods; Monte Carlo methods; Optimization methods; Stochastic processes; Stochastic systems;
Conference_Titel :
Decision and Control, 1988., Proceedings of the 27th IEEE Conference on
Conference_Location :
Austin, TX
DOI :
10.1109/CDC.1988.194568