• DocumentCode
    2976233
  • Title

    Estimation of elastic parameters in a nonlinear elliptic system

  • Author

    White, L.W.

  • Author_Institution
    Dept. of Math., Oklahoma Univ., Norman, OK, USA
  • fYear
    1988
  • fDate
    7-9 Dec 1988
  • Firstpage
    1649
  • Abstract
    The author discusses the estimation of a flexural rigidity coefficient in a nonlinear von Karman model of a static plate. Existence of optimal estimators is established. Sufficient conditions are presented that imply the convergence of linear approximating systems and their associated optimal estimators. The author obtains conditions under which the variation exists and uses this result to determine regularity properties of the optimal estimators
  • Keywords
    convergence; distributed parameter systems; elasticity; nonlinear systems; parameter estimation; convergence; elastic parameters; elliptic system; flexural rigidity coefficient; linear approximating systems; nonlinear system; optimal estimator existence; regularity properties; static plate; von Karman model; Boundary conditions; Deformable models; Gold; Linear approximation; Mathematical model; Mathematics; Nonlinear equations; Parameter estimation; Sufficient conditions;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Decision and Control, 1988., Proceedings of the 27th IEEE Conference on
  • Conference_Location
    Austin, TX
  • Type

    conf

  • DOI
    10.1109/CDC.1988.194608
  • Filename
    194608