DocumentCode :
2977449
Title :
A static detection model of malicious PDF documents based on naive Bayesian classifier technology
Author :
Huang Cheng ; Fang Yong ; Liu Liang ; Lu-Rong Wang
Author_Institution :
Sch. of Electron. & Inf. Eng., Sichuan Univ., Chengdu, China
fYear :
2012
fDate :
17-19 Dec. 2012
Firstpage :
29
Lastpage :
32
Abstract :
For the purpose of improving native detective method based on signature matching of traditional anti-virus software and inadequate performance of dynamic testing, the researchers demonstrate a new static detection model of malicious PDF documents based on naive Bayes classifier technology. The model considers with exploit techniques of heap spray, JavaScript syntax and shellcode feature. Compare to traditional detection techniques, the training samples and actual test data showed that the detection efficiency and accuracy of the model have improved greatly.
Keywords :
Bayes methods; Java; digital signatures; document handling; pattern classification; JavaScript syntax; antivirus software; detection technique; dynamic testing; heap spray; malicious PDF documents; naive Bayesian classifier technology; native detective method; shellcode feature; signature matching; static detection model; Abstracts; Blogs; Portable document format; Static model; heap spray; malicious document; naive Bayes;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Wavelet Active Media Technology and Information Processing (ICWAMTIP), 2012 International Conference on
Conference_Location :
Chengdu
Print_ISBN :
978-1-4673-1684-2
Type :
conf
DOI :
10.1109/ICWAMTIP.2012.6413432
Filename :
6413432
Link To Document :
بازگشت