DocumentCode :
2987544
Title :
Reinforcement Learning for the N-Persons Iterated Prisoners´ Dilemma
Author :
Agudo, J. Enrique ; Fyfe, Colin
Author_Institution :
Univ. of Extremadura, Caceres, Spain
fYear :
2011
fDate :
3-4 Dec. 2011
Firstpage :
472
Lastpage :
476
Abstract :
This paper discusses an empirical investigation into the N-person´s Iterated Prisoners´ Dilemma, a standard problem from game theory. We use reinforcement learning and our experimental results give some insight into the circumstances where cooperation might develop.
Keywords :
game theory; iterative methods; learning (artificial intelligence); N-persons iterated prisoners dilemma; game theory; reinforcement learning; Computational intelligence; Finance; Games; Immune system; Learning; Oligopoly; iterated prisoners dilemma; reinforcement learning;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Intelligence and Security (CIS), 2011 Seventh International Conference on
Conference_Location :
Hainan
Print_ISBN :
978-1-4577-2008-6
Type :
conf
DOI :
10.1109/CIS.2011.111
Filename :
6128167
Link To Document :
بازگشت