DocumentCode :
2988205
Title :
Valid inequalities for binary linear codes
Author :
Tanatmis, Akin ; Ruzika, Stefan ; Hamacher, Horst W. ; Punekar, Mayur ; Kienle, Frank ; Wehn, Norbert
Author_Institution :
Dept. of Math., Univ. of Kaiserslautern, Kaiserslautern, Germany
fYear :
2009
fDate :
June 28 2009-July 3 2009
Firstpage :
2216
Lastpage :
2220
Abstract :
We study an integer programming (IP) based separation approach to find the maximum likelihood (ML) codeword for binary linear codes. An algorithm introduced in Tanatmis et al. is extended and improved with respect to decoding performance without increasing the worst case complexity. This is demonstrated on the LDPC and the BCH code classes. Moreover, we propose an integer programming formulation to calculate the minimum distance of a binary linear code. We exemplarily compute the minimum distance of the (204, 102) LDPC code and the (576, 288) WIMAX code. Using the minimum distance of a code, a new class of valid inequalities is introduced.
Keywords :
BCH codes; binary codes; linear codes; maximum likelihood decoding; parity check codes; BCH code; LDPC code; binary linear codes; integer programming; maximum likelihood codeword; minimum distance; separation approach; valid inequalities; Change detection algorithms; Linear code; Linear matrix inequalities; Linear programming; Mathematics; Maximum likelihood decoding; Microelectronics; Parity check codes; Polynomials; WiMAX;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory, 2009. ISIT 2009. IEEE International Symposium on
Conference_Location :
Seoul
Print_ISBN :
978-1-4244-4312-3
Electronic_ISBN :
978-1-4244-4313-0
Type :
conf
DOI :
10.1109/ISIT.2009.5205846
Filename :
5205846
Link To Document :
بازگشت