Title :
Design of High-Radix Clos Network-on-Chip
Author :
Kao, Yu-Hsiang ; Alfaraj, Najla ; Yang, Ming ; Chao, H. Jonathan
Author_Institution :
Dept. of Electr. & Comput. Eng., Polytech. Inst. of New York Univ., Brooklyn, NY, USA
Abstract :
Many high-radix Network-on-Chip (NOC) topologies have been proposed to improve network performance with an ever-growing number of processing elements (PEs) on a chip. We believe Clos Network-on-Chip (CNOC) is the most promising with its low average hop counts and good load-balancing characteristics. In this paper, we propose (1) a high-radix router architecture with Virtual Output Queue (VOQ) buffer structure and Packet Mode Dual Round-Robin Matching (PDRRM) scheduling algorithm to achieve high speed and high throughput in CNOC, (2) a heuristic floor-planning algorithm to minimize the power consumption caused by the long wires. Experimental results show that the throughput of a 64-node 3-stage CNOC under uniform traffic increases from 62% to 78% by replacing the baseline routers with PDRRM VOQ routers. We also compared CNOC with other NOC topologies, and found that using the new design techniques, CNOC has the highest throughput, lowest zero-load latency, and best power efficiency.
Keywords :
circuit layout; logic design; network topology; network-on-chip; CNOC; NOC topology; PDRRM scheduling; VOQ buffer structure; heuristic floor-planning algorithm; high-radix clos network-on-chip; high-radix router architecture; packet mode dual round-robin matching; virtual output queue; Delay; Energy consumption; Heuristic algorithms; Network topology; Network-on-a-chip; Round robin; Scheduling algorithm; Throughput; Traffic control; Wires;
Conference_Titel :
Networks-on-Chip (NOCS), 2010 Fourth ACM/IEEE International Symposium on
Conference_Location :
Grenoble
Print_ISBN :
978-1-4244-7085-3
Electronic_ISBN :
978-1-4244-7086-0
DOI :
10.1109/NOCS.2010.27