DocumentCode :
2989162
Title :
On Extended Forney-Kovalev GMD decoding
Author :
Sidorenko, Vladimir R. ; Chaaban, Anas ; Senger, Christian ; Bossert, Martin
Author_Institution :
Inst. of Telecommun. & Appl. Inf. Theor., Ulm Univ., Ulm, Germany
fYear :
2009
fDate :
June 28 2009-July 3 2009
Firstpage :
1393
Lastpage :
1397
Abstract :
Consider a code C with Hamming distance d. Assume we have a decoder ¿ that corrects ¿ errors and ¿ erasures if ¿¿ + ¿ ¿ d - 1, where a real number 1 < ¿ ¿ 2 is the tradeoff rate between errors and erasures for this decoder. This holds e.g. for l-punctured Reed-Solomon codes, i.e., codes over the field F q l of length n < q with locators taken from the subfield Fq, where l ¿ {1, 2, . . .} and ¿ = 1+1/l. We propose an m-trial generalized minimum distance (GMD) decoder based on ¿. Our approach extends results of Forney and Kovalev (obtained for ¿ = 2) to the whole given range of ¿. We consider both fixed erasing and adaptive erasing GMD strategies. For l > 1 the following approximations hold. For the fixed erasing strategy the error correcting radius is ¿F ¿ d/2 (1 - l-m/2). For the adaptive erasing strategy, ¿A ¿ d/2 (1 - l-2m) quickly approaches d/2 if l or m grows. The minimum number of decoding trials required to reach an error correcting radius d/2 is mA = 1/2 (logl d + 1). This means that 2 or 3 trials are sufficient to reach ¿A = d/2 in many practical cases if l > 1.
Keywords :
Hamming codes; decoding; error correction codes; GMD decoding; Hamming distance; Reed-Solomon codes; error correcting radius; extended Forney-Kovalev; generalized minimum distance decoding; Block codes; Concatenated codes; Decoding; Error correction; Error correction codes; Hamming distance; Information theory; Reed-Solomon codes;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory, 2009. ISIT 2009. IEEE International Symposium on
Conference_Location :
Seoul
Print_ISBN :
978-1-4244-4312-3
Electronic_ISBN :
978-1-4244-4313-0
Type :
conf
DOI :
10.1109/ISIT.2009.5205900
Filename :
5205900
Link To Document :
بازگشت