DocumentCode :
2989784
Title :
Sequential probability assignment via online convex programming using exponential families
Author :
Raginsky, Maxim ; Marcia, Roummel F. ; Silva, Jorge ; Willett, Rebecca M.
Author_Institution :
ECE Dept., Duke Univ., Durham, NC, USA
fYear :
2009
fDate :
June 28 2009-July 3 2009
Firstpage :
1338
Lastpage :
1342
Abstract :
This paper considers the problem of sequential assignment of probabilities (likelihoods) to elements of an individual sequence using an exponential family of probability distributions. We draw upon recent work on online convex programming to devise an algorithm that does not require computing posterior distributions given all current observations, involves simple primal-dual parameter updates, and achieves minimax per-round regret against slowly varying product distributions with marginals drawn from the same exponential family. We validate the theory on synthetic data drawn from a time-varying distribution over binary vectors of high dimensionality.
Keywords :
convex programming; minimax techniques; statistical distributions; binary vectors; exponential families; minimax per-round regret; online convex programming; primal-dual parameter updates; probability distributions; sequential probability assignment; time-varying distribution; Data compression; Distributed computing; Entropy; Investments; Minimax techniques; Mirrors; Probability distribution;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory, 2009. ISIT 2009. IEEE International Symposium on
Conference_Location :
Seoul
Print_ISBN :
978-1-4244-4312-3
Electronic_ISBN :
978-1-4244-4313-0
Type :
conf
DOI :
10.1109/ISIT.2009.5205929
Filename :
5205929
Link To Document :
بازگشت