• DocumentCode
    299111
  • Title

    Unsupervised, robust estimation-based clustering of remotely sensed images

  • Author

    Netanyahu, Nathan S. ; Tilton, James C. ; Gualtieri, J. Anthony

  • Author_Institution
    Center for Autom. Res., Maryland Univ., College Park, MD, USA
  • Volume
    2
  • fYear
    34881
  • fDate
    10-14 Jul1995
  • Firstpage
    1150
  • Abstract
    Automated image clustering/classification is a task of considerable importance. To apply this task to remotely sensed imagery, the authors have pursued an unsupervised clustering scheme based on principles of robust (statistical) estimation. A description of the module employed and results obtained are provided
  • Keywords
    geophysical signal processing; geophysical techniques; image classification; optical information processing; remote sensing; geophysical measurement technique; image classification; land surface; multispectral imaging; optical imaging; remote sensing; robust estimation-based clustering; terrain mapping; unsupervised clustering scheme; unsupervised image clustering; Automation; Clustering algorithms; Content management; Data mining; Educational institutions; Maximum likelihood estimation; NASA; Remote sensing; Robustness; Space technology;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Geoscience and Remote Sensing Symposium, 1995. IGARSS '95. 'Quantitative Remote Sensing for Science and Applications', International
  • Conference_Location
    Firenze
  • Print_ISBN
    0-7803-2567-2
  • Type

    conf

  • DOI
    10.1109/IGARSS.1995.521168
  • Filename
    521168