Title :
An optimal result for codes identifying sets of words
Author :
Janson, Svante ; Laihonen, Tero
Author_Institution :
Dept. of Math., Uppsala Univ., Uppsala, Sweden
fDate :
June 28 2009-July 3 2009
Abstract :
In this paper, we consider identifying codes in binary Hamming spaces Fn. The concept of identifying codes was introduced by Karpovsky, Chakrabarty and Levitin. Currently, the subject forms a topic of its own with several possible applications, for example, to sensor networks. Let a code C ¿ Fn. For any set of words X ¿ Fn, denote by Ir(X) = Ir(C; X) the set of codewords within distance r from at least one x ¿ X. Now a code C ¿ Fn is called (r, ¿ ¿)-identifying if the sets Ir(X) are distinct for all X ¿ Fn of size at most ¿. Let us denote by Mr (¿¿) (n) the smallest possible cardinality of an (r, ¿ ¿)-identifying code. In 2002, Honkala and Lobstein showed for ¿ = 1 that limn¿¿ 1/n log2 Mr (¿¿) (n) = 1 - h(¿) where r = [¿n], ¿ ¿ (0, 1) and h(x) is the binary entropy function. In this paper, we prove that this result holds for any fixed ¿ ¿ 1 when ¿ ¿ (0, 1/2). We also show that Mr (¿¿) (n) = O(n3/2) for every fixed ¿ and r slightly less than n/2, and give an explicit construction of small (r, ¿ 2)-identifying codes for r = [n/2] - 1.
Keywords :
Hamming codes; binary codes; entropy codes; binary Hamming space codes; binary entropy function; explicit construction; identifying codes; identifying word sets; sensor networks; Energy conservation; Entropy; Hypercubes; Mathematics; Multiprocessing systems;
Conference_Titel :
Information Theory, 2009. ISIT 2009. IEEE International Symposium on
Conference_Location :
Seoul
Print_ISBN :
978-1-4244-4312-3
Electronic_ISBN :
978-1-4244-4313-0
DOI :
10.1109/ISIT.2009.5206019