DocumentCode
299175
Title
Convergence suppression and divergence facilitation: new approach to prune hidden layer and weights of feedforward neural networks
Author
Yasui, Syozo ; Malinowski, Aleksander ; Zurada, Jacek M.
Author_Institution
Neurosystems Lab., Kyushu Inst. of Technol., Fukuoka, Japan
Volume
1
fYear
1995
fDate
30 Apr-3 May 1995
Firstpage
121
Abstract
A pruning algorithm is devised for multilayer multi-output feedforward perceptron networks. The algorithm efficiently reduces the total number of hidden units and the number of weights in the output layer. Test examples include network pruning for the IRIS classifier and for the bitmap digit classifier
Keywords
backpropagation; convergence; feedforward neural nets; multilayer perceptrons; pattern classification; IRIS classifier; bitmap digit classifier; convergence suppression; divergence facilitation; feedforward neural networks; hidden layer; multilayer multi-output feedforward perceptron networks; pruning algorithm; weights; Convergence; Network topology; Neural networks; Neurons; Wiring;
fLanguage
English
Publisher
ieee
Conference_Titel
Circuits and Systems, 1995. ISCAS '95., 1995 IEEE International Symposium on
Conference_Location
Seattle, WA
Print_ISBN
0-7803-2570-2
Type
conf
DOI
10.1109/ISCAS.1995.521466
Filename
521466
Link To Document