DocumentCode :
2992625
Title :
Closed-form solution+maximum likelihood: a robust approach to motion and structure estimation
Author :
Weng, Juyang ; Ahuja, Narendra ; Huang, Thomas S.
Author_Institution :
Coordinated Sci. Lab., Illinois Univ., Urbana, IL, USA
fYear :
1988
fDate :
5-9 Jun 1988
Firstpage :
381
Lastpage :
386
Abstract :
A robust approach is presented to estimation motion and structure from image sequences. The approach consists of two steps. The first step is estimating the motion parameters using a robust linear algorithm that gives a closed-form solution for motion parameters and scene structure. The second step is improving the results from the linear algorithm using maximum-likelihood estimation. An algorithm using point correspondences from monocular images is discussed in detail and experimented with. An algorithm using line correspondences is briefly discussed. The simulations show that maximum-likelihood estimation achieves remarkable improvement over the preliminary estimates given by the linear algorithm. The algorithm is also tested on images of real scenes from automatically computed displacement field. The proposed approach is independent of the exact tokens used to establish correspondences, e.g. displacement flow, optical flow, or discrete features. Two or more types of tokens may be used, for monocular or binocular images
Keywords :
parameter estimation; picture processing; binocular images; line correspondences; linear algorithm; maximum-likelihood estimation; monocular images; motion estimation; motion parameters; parameter estimation; picture processing; point correspondences; scene structure; structure estimation; Automatic testing; Closed-form solution; Computational modeling; Image motion analysis; Image sequences; Layout; Maximum likelihood estimation; Motion estimation; Parameter estimation; Robustness;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision and Pattern Recognition, 1988. Proceedings CVPR '88., Computer Society Conference on
Conference_Location :
Ann Arbor, MI
ISSN :
1063-6919
Print_ISBN :
0-8186-0862-5
Type :
conf
DOI :
10.1109/CVPR.1988.196263
Filename :
196263
Link To Document :
بازگشت