DocumentCode
2994543
Title
Nonlinear modeling of a capacitive MEMS accelerometer using neural network
Author
Bahadorimehr, A.R. ; Hamidon, M. ; Hezarjaribi, Y.
Author_Institution
Electr. & Electron. Dept., Univ. Putra Malaysia, Serdang, Malaysia
fYear
2008
fDate
4-6 Nov. 2008
Firstpage
1
Lastpage
6
Abstract
This paper presents a nonlinear model for a capacitive Microelectromechanical accelerometer (MEMA). System parameters of the accelerometer are developed using the effect of cubic term of the folded-flexure spring. To solving this equation we use FEA method. The neural network (NN) uses Levenberg-Marquardt (LM) method for training the system to have more accurate response. The designed NN can identify and predict the displacement of movable mass of accelerometer. The simulation results are very promising.
Keywords
accelerometers; capacitive sensors; electrical engineering computing; finite element analysis; microsensors; neural nets; FEA method; Levenberg-Marquardt method; capacitive MEMS accelerometer; folded-flexure spring; microelectromechanical accelerometer; neural network; nonlinear modeling; Accelerometers; Circuit faults; Fault diagnosis; Field programmable gate arrays; Logic testing; Manufacturing; Micromechanical devices; Neural networks; Table lookup; Tiles;
fLanguage
English
Publisher
ieee
Conference_Titel
Electronic Manufacturing Technology Symposium (IEMT), 2008 33rd IEEE/CPMT International
Conference_Location
Penang
ISSN
1089-8190
Print_ISBN
978-1-4244-3392-6
Electronic_ISBN
1089-8190
Type
conf
DOI
10.1109/IEMT.2008.5507887
Filename
5507887
Link To Document