• DocumentCode
    2994543
  • Title

    Nonlinear modeling of a capacitive MEMS accelerometer using neural network

  • Author

    Bahadorimehr, A.R. ; Hamidon, M. ; Hezarjaribi, Y.

  • Author_Institution
    Electr. & Electron. Dept., Univ. Putra Malaysia, Serdang, Malaysia
  • fYear
    2008
  • fDate
    4-6 Nov. 2008
  • Firstpage
    1
  • Lastpage
    6
  • Abstract
    This paper presents a nonlinear model for a capacitive Microelectromechanical accelerometer (MEMA). System parameters of the accelerometer are developed using the effect of cubic term of the folded-flexure spring. To solving this equation we use FEA method. The neural network (NN) uses Levenberg-Marquardt (LM) method for training the system to have more accurate response. The designed NN can identify and predict the displacement of movable mass of accelerometer. The simulation results are very promising.
  • Keywords
    accelerometers; capacitive sensors; electrical engineering computing; finite element analysis; microsensors; neural nets; FEA method; Levenberg-Marquardt method; capacitive MEMS accelerometer; folded-flexure spring; microelectromechanical accelerometer; neural network; nonlinear modeling; Accelerometers; Circuit faults; Fault diagnosis; Field programmable gate arrays; Logic testing; Manufacturing; Micromechanical devices; Neural networks; Table lookup; Tiles;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Electronic Manufacturing Technology Symposium (IEMT), 2008 33rd IEEE/CPMT International
  • Conference_Location
    Penang
  • ISSN
    1089-8190
  • Print_ISBN
    978-1-4244-3392-6
  • Electronic_ISBN
    1089-8190
  • Type

    conf

  • DOI
    10.1109/IEMT.2008.5507887
  • Filename
    5507887