DocumentCode :
2996516
Title :
Classification of multichannel EEG data using length/energy transforms
Author :
Gutiérrez, David ; García-Nocetti, Fabián ; Solano-González, Julio
Author_Institution :
Dept. of Comput. Ssystems Eng. & Autom., Research Inst. in Appl. Math. & Syst., Mexico City
fYear :
2005
fDate :
13-13 Dec. 2005
Firstpage :
221
Lastpage :
224
Abstract :
We propose the use of length and energy transforms in the classification of multichannel EEG data to identify different cognitive activity using a reduced set of recording electrodes. The length transform (ET) represents a temporarily smoothed time course of the data, while the energy transform (ET) can be interpreted as a short-term energy estimate. The transformation of the data in the length/energy domain allows to effectively preserving important data features when autoregressive (AR) models are used to reduce the dimension of the classification problem. We evaluate the performance of the ET and ET on the classification of real cognitive EEG data for the case when the optimal AR model is selected under the Schwarz´s Bayesian criterion (SBC) and a Mahalanobis distance-based classifier is used. Our results show that accurate classification is achieved when the data is transformed through the ET or ET even for low-order AR models, having the ET slightly better performance
Keywords :
Bayes methods; autoregressive processes; electroencephalography; medical signal processing; signal classification; transforms; Mahalanobis distance-based classifier; Schwarz Bayesian criterion; autoregressive models; energy transform; length transform; multichannel EEG data classification; Automation; Bayesian methods; Brain computer interfaces; Brain modeling; Electroencephalography; Finite impulse response filter; Power engineering and energy; Robustness; Signal processing; Systems engineering and theory;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Advances in Multi-Sensor Adaptive Processing, 2005 1st IEEE International Workshop on
Conference_Location :
Puerto Vallarta
Print_ISBN :
0-7803-9322-8
Type :
conf
DOI :
10.1109/CAMAP.2005.1574224
Filename :
1574224
Link To Document :
بازگشت