DocumentCode :
2998842
Title :
Ballistic Rockets Tracking: Kalman versus αβγ Filters
Author :
Abreu, José Alano P ; Neto, João Viana F ; Oliveira, Roberto C Limão
Author_Institution :
Inst. of Technol., Fed. Univ. of Para, Belém, Brazil
fYear :
2011
fDate :
March 30 2011-April 1 2011
Firstpage :
313
Lastpage :
318
Abstract :
This article presents the problem of tracking ballistic rockets through the propelled and ballistic stages using measured radar signal processing. We developed a dynamic model of a moving target. We have compared the performance of the estimation through quadratic mean error of the αβγ and Kalman filters. The results show that the Kalman filter has a better performance, it combines the statistical efficiency with a modest computational effort. This conclusion is valid when the target´s ballistic coefficient is known a priori.
Keywords :
Kalman filters; ballistics; mean square error methods; object tracking; radar signal processing; αβγ filters; Kalman filters; ballistic rockets tracking; quadratic mean error; radar signal processing; statistical efficiency; target ballistic coefficient; Acceleration; Equations; Kalman filters; Mathematical model; Noise; Radar tracking; Rockets; αβγ filter; Kalman filter; rocket tracking; state estimation; stochastic models;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Modelling and Simulation (UKSim), 2011 UkSim 13th International Conference on
Conference_Location :
Cambridge
Print_ISBN :
978-1-61284-705-4
Electronic_ISBN :
978-0-7695-4376-5
Type :
conf
DOI :
10.1109/UKSIM.2011.66
Filename :
5754233
Link To Document :
بازگشت