Title :
Contextual restoration of severely degraded document images
Author :
Banerjee, Joydeep ; Namboodiri, Anoop M. ; Jawahar, C.V.
Author_Institution :
Center for Visual Inf. Technol., IIIT Hyderabad, Hyderabad, India
Abstract :
We propose an approach to restore severely degraded document images using a probabilistic context model. Unlike traditional approaches that use previously learned prior models to restore an image, we are able to learn the text model from the degraded document itself, making the approach independent of script, font, style, etc. We model the contextual relationship using an MRF. The ability to work with larger patch sizes allows us to deal with severe degradations including cuts, blobs, merges and vandalized documents. Our approach can also integrate document restoration and super-resolution into a single framework, thus directly generating high quality images from degraded documents. Experimental results show significant improvement in image quality on document images collected from various sources including magazines and books, and comprehensively demonstrate the robustness and adaptability of the approach. It works well with document collections such as books, even with severe degradations, and hence is ideally suited for repositories such as digital libraries.
Keywords :
Markov processes; document image processing; image resolution; image restoration; probability; random processes; text analysis; MRF; Markov random field; contextual restoration; degraded document image restoration; digital library; probabilistic context model; super-resolution image; text model; Aging; Books; Context modeling; Degradation; Filtering; Image restoration; Ink; Printing; Robustness; Software libraries;
Conference_Titel :
Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on
Conference_Location :
Miami, FL
Print_ISBN :
978-1-4244-3992-8
DOI :
10.1109/CVPR.2009.5206601