DocumentCode :
301054
Title :
Statistical analysis of polynomial phase signal parameter estimates based on structured auto-regressive modeling
Author :
Ängeby, Jakob
Author_Institution :
Chalmers Univ. of Technol., Goteborg, Sweden
fYear :
1996
fDate :
24-26 Jun 1996
Firstpage :
444
Lastpage :
447
Abstract :
A statistical analysis of the polynomial phase signal parameter estimates achieved when using the structured auto-regressive approach is presented. The estimates are consistent for high SNR or large number of samples, N. An expression for the covariance of the estimates is given. Numerical examples confirm that the theoretical covariance apply well to empirical data for a wide range of SNR and N. The performance of the estimator depends on the filter length, n, and the sampling strategy which may be non-uniform. The optimal choice of n for evenly sampled cisoids is given as a function of N. The variance is inversely proportional to SNR2 for small SNR, and to SNR for medium and high SNR
Keywords :
autoregressive processes; covariance analysis; digital filters; interference (signal); optimisation; phase estimation; polynomial matrices; signal sampling; SNR; cisoids; covariance; filter length; numerical examples; performance; polynomial phase signal parameter estimates; sampling strategy; statistical analysis; structured auto-regressive modeling; variance; Doppler radar; Filters; Geophysics; Parameter estimation; Phase estimation; Polynomials; Radar applications; Sampling methods; Sonar applications; Statistical analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Statistical Signal and Array Processing, 1996. Proceedings., 8th IEEE Signal Processing Workshop on (Cat. No.96TB10004
Conference_Location :
Corfu
Print_ISBN :
0-8186-7576-4
Type :
conf
DOI :
10.1109/SSAP.1996.534911
Filename :
534911
Link To Document :
بازگشت