Title :
Adaptive parameter estimation of cardiovascular signals using sequential Bayesian techniques
Author :
Edla, Shwetha ; Zhang, Jun Jason ; Spanias, John ; Kovvali, Narayan ; Papandreou-Suppappola, Antonia ; Chakrabarti, Chaitali
Author_Institution :
Sch. of Electr., Arizona State Univ., Tempe, AZ, USA
Abstract :
Parameter estimation of biological signals such as the electrocardiogram (ECG) is of key clinical significance and can be used to monitor cardiac health and diagnose heart diseases. However, statistical ECG models with unknown parameters depend upon a priori parameters such as mean cardiac frequency and user-specified parameters such as the number of harmonics in the ECG model. These parameters can vary from patient to patient and with different disease stages. In this paper, we propose a sequential Bayesian tracking method to adaptively select the best cardiac parameters in order to minimize the parameter estimation error. Our results using real ECG data demonstrate the importance of the adaptive algorithm for selecting cardiac parameters at each time instant and show how these parameters can be used to classify different types of ECG signals.
Keywords :
Bayes methods; adaptive estimation; electrocardiography; medical signal processing; parameter estimation; patient diagnosis; patient monitoring; signal classification; statistical analysis; ECG data; adaptive parameter estimation; biological signals; cardiac frequency; cardiac health monitoring; cardiovascular signals; electrocardiogram; heart disease diagnosis; sequential Bayesian tracking method; statistical ECG models; Adaptation model; Bayesian methods; Electrocardiography; Estimation; Frequency estimation; Harmonic analysis; Kalman filters;
Conference_Titel :
Signals, Systems and Computers (ASILOMAR), 2010 Conference Record of the Forty Fourth Asilomar Conference on
Conference_Location :
Pacific Grove, CA
Print_ISBN :
978-1-4244-9722-5
DOI :
10.1109/ACSSC.2010.5757538