DocumentCode :
3013796
Title :
Deterministic small-world graphs and the eigenvalue power law of Internet
Author :
Cornelias, F. ; Gago, Silvia
Author_Institution :
Departament de Matematica Aplicada, Univ. Politecnica de Catalunya, Barcelona, Spain
fYear :
2004
fDate :
10-12 May 2004
Firstpage :
374
Lastpage :
379
Abstract :
Many relevant real-life networks like the WWW, Internet, transportation and communication networks, or even biological and social networks can be modelled by small-world scale-free graphs. These graphs have strong local clustering (vertices have many mutual neighbors), a small diameter and a distribution of degrees according to a power law. On the other hand, the knowledge of the spectrum of a graph is important for the relation which the eigenvalues and their multiplicities have with relevant graph invariants and topological and communication properties such as diameter, bisection width, distances, connectivity, expansion, partitions, edge-loading distribution etc. In this paper we introduce a new family of deterministic small-world graphs, we determine analytically their spectra and we show how these graphs can model the eigenvalue power-law of the Internet network.
Keywords :
Internet; eigenvalues and eigenfunctions; graph theory; Internet; World Wide Web; biological networks; bisection width; clustering; communication networks; communication properties; deterministic small-world graphs; edge-loading distribution; eigenvalue power law; graph invariants; mutual neighbors; scale-free graphs; social networks; topological properties; transportation networks; Communication networks; Eigenvalues and eigenfunctions; IP networks; Internet; Irrigation; Partitioning algorithms; Social network services; Stochastic processes; Transportation; World Wide Web;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Parallel Architectures, Algorithms and Networks, 2004. Proceedings. 7th International Symposium on
ISSN :
1087-4089
Print_ISBN :
0-7695-2135-5
Type :
conf
DOI :
10.1109/ISPAN.2004.1300508
Filename :
1300508
Link To Document :
بازگشت