DocumentCode :
3014516
Title :
Selecting signature optical emission spectroscopy variables using sparse principal component analysis
Author :
Ma, Beibei ; McLoone, Seán ; Ringwood, John ; MacGearailt, Niall
Author_Institution :
Dept. of Electron. Eng., Nat. Univ. of Ireland, Maynooth
fYear :
2008
fDate :
24-27 Dec. 2008
Firstpage :
14
Lastpage :
19
Abstract :
Principal component analysis (PCA) is a widely used technique in optical emission spectroscopy (OES) sensor data analysis for the low dimension representation of high dimensional datasets. While PCA produces a linear combination of all the variables in each loading, sparse principal component analysis (SPCA) focuses on using a subset of variables in each loading. Therefore, SPCA can be used as a key variable selection technique. This paper shows that, using SPCA to analyze 2046 variable OES data sets, the number of selected variables can be traded off against variance explained to identifying a subset of key wavelengths, with an acceptable level of variance explained. SPCA-related issues such as selection of the tuning parameter and the grouping effect are discussed.
Keywords :
data handling; infrared spectroscopy; principal component analysis; optical emission spectroscopy variables; sensor data analysis; sparse principal component analysis; Chemicals; Input variables; Optical devices; Optical sensors; Plasma applications; Plasma chemistry; Plasma materials processing; Principal component analysis; Spectroscopy; Stimulated emission;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer and Information Technology, 2008. ICCIT 2008. 11th International Conference on
Conference_Location :
Khulna
Print_ISBN :
978-1-4244-2135-0
Electronic_ISBN :
978-1-4244-2136-7
Type :
conf
DOI :
10.1109/ICCITECHN.2008.4803104
Filename :
4803104
Link To Document :
بازگشت