DocumentCode :
3014659
Title :
A unifying viewpoint of some clustering techniques using Bregman divergences and extensions to mixed data sets
Author :
Levasseur, Cécile ; Burdge, Brandon ; Kreutz-Delgado, Ken ; Mayer, Uwe F.
Author_Institution :
Jacobs Sch. of Eng., Univ. of California, San Diego, La Jolla, CA
fYear :
2008
fDate :
24-27 Dec. 2008
Firstpage :
56
Lastpage :
63
Abstract :
We present a general viewpoint using Bregman divergences and exponential family properties that contains as special cases the three following algorithms: 1) exponential family principal component analysis (exponential PCA), 2) Semi-Parametric exponential family principal component analysis (SP-PCA) and 3) Bregman soft clustering. This framework is equivalent to a mixed data-type hierarchical Bayes graphical model assumption with latent variables constrained to a low-dimensional parameter subspace. We show that within this framework exponential PCA and SPPCA are similar to the Bregman soft clustering technique with the addition of a linear constraint in the parameter space. We implement the resulting modifications to SP-PCA and Bregman soft clustering for mixed (continuous and/or discrete) data sets, and add a nonparametric estimation of the point-mass probabilities to exponential PCA. Finally, we compare the relative performances of the three algorithms in a clustering setting for mixed data sets.
Keywords :
Bayes methods; nonparametric statistics; pattern clustering; principal component analysis; probability; Bregman divergence; Bregman soft clustering; clustering technique; exponential family properties; linear constraint; low-dimensional parameter subspace; mixed data sets; mixed data-type hierarchical Bayes graphical model; nonparametric estimation; parameter space; point-mass probabilities; semiparametric exponential family principal component analysis; Artificial intelligence; Clustering algorithms; Data engineering; Data mining; Density functional theory; Euclidean distance; Graphical models; Jacobian matrices; Principal component analysis; Subspace constraints;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer and Information Technology, 2008. ICCIT 2008. 11th International Conference on
Conference_Location :
Khulna
Print_ISBN :
978-1-4244-2135-0
Electronic_ISBN :
978-1-4244-2136-7
Type :
conf
DOI :
10.1109/ICCITECHN.2008.4803110
Filename :
4803110
Link To Document :
بازگشت