Title :
Detecting Pedestrians by Learning Shapelet Features
Author :
Sabzmeydani, Payam ; Mori, Greg
Author_Institution :
Simon Fraser Univ., Burnaby
Abstract :
In this paper, we address the problem of detecting pedestrians in still images. We introduce an algorithm for learning shapelet features, a set of mid-level features. These features are focused on local regions of the image and are built from low-level gradient information that discriminates between pedestrian and non-pedestrian classes. Using Ad-aBoost, these shapelet features are created as a combination of oriented gradient responses. To train the final classifier, we use AdaBoost for a second time to select a subset of our learned shapelets. By first focusing locally on smaller feature sets, our algorithm attempts to harvest more useful information than by examining all the low-level features together. We present quantitative results demonstrating the effectiveness of our algorithm. In particular, we obtain an error rate 14 percentage points lower (at 10-6 FPPW) than the previous state of the art detector of Dalal and Triggs on the INRIA dataset.
Keywords :
image classification; AdaBoost; classifier; learned shapelets; low-level gradient information; pedestrian detection; shapelet features; Arm; Computer vision; Detectors; Head; Humans; Image edge detection; Image segmentation; Object detection; Shape; Support vector machines;
Conference_Titel :
Computer Vision and Pattern Recognition, 2007. CVPR '07. IEEE Conference on
Conference_Location :
Minneapolis, MN
Print_ISBN :
1-4244-1179-3
Electronic_ISBN :
1063-6919
DOI :
10.1109/CVPR.2007.383134