DocumentCode :
3016190
Title :
Simultaneous Covariance Driven Correspondence (CDC) and Transformation Estimation in the Expectation Maximization Framework
Author :
Sofka, Michal ; Yang, Gehua ; Stewart, Charles V.
Author_Institution :
Rensselaer Polytech. Inst., Troy
fYear :
2007
fDate :
17-22 June 2007
Firstpage :
1
Lastpage :
8
Abstract :
This paper proposes a new registration algorithm, Co-variance Driven Correspondences (CDC), that depends fundamentally on the estimation of uncertainty in point correspondences. This uncertainty is derived from the covariance matrices of the individual point locations and from the covariance matrix of the estimated transformation parameters. Based on this uncertainty, CDC uses a robust objective function and an EM-like algorithm to simultaneously estimate the transformation parameters, their covariance matrix, and the likely correspondences. Unlike the Robust Point Matching (RPM) algorithm, CDC requires neither an annealing schedule nor an explicit outlier process. Experiments on synthetic and real images using a polynomial transformation models in 2D and in 3D show that CDC has a broader domain of convergence than the well-known Iterative Closest Point (ICP) algorithm and is more robust to missing or extraneous structures in the data than RPM.
Keywords :
covariance matrices; expectation-maximisation algorithm; image matching; image registration; parameter estimation; polynomial approximation; covariance driven correspondence; covariance matrix; expectation maximization framework; point correspondence; polynomial transformation model; registration algorithm; robust objective function; transformation parameter estimation; uncertainty estimation; Annealing; Convergence; Covariance matrix; Iterative algorithms; Iterative closest point algorithm; Parameter estimation; Polynomials; Robustness; Scheduling algorithm; Uncertainty;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision and Pattern Recognition, 2007. CVPR '07. IEEE Conference on
Conference_Location :
Minneapolis, MN
ISSN :
1063-6919
Print_ISBN :
1-4244-1179-3
Electronic_ISBN :
1063-6919
Type :
conf
DOI :
10.1109/CVPR.2007.383166
Filename :
4270191
Link To Document :
بازگشت