DocumentCode :
3017338
Title :
Combining Region and Edge Cues for Image Segmentation in a Probabilistic Gaussian Mixture Framework
Author :
Rotem, Omer ; Greenspan, Hayit ; Goldberger, Jacob
Author_Institution :
Tel Aviv Univ., Tel Aviv
fYear :
2007
fDate :
17-22 June 2007
Firstpage :
1
Lastpage :
8
Abstract :
In this paper we propose a new segmentation algorithm which combines patch-based information with edge cues under a probabilistic framework. We use a mixture of multiple Gaussians for building the statistical model with color and spatial features, and we incorporate edge information based on texture, color and brightness differences into the EM algorithm. We evaluate our results qualitatively and quantitatively on a large data-set of natural images and compare our results to other state-of-the-art methods.
Keywords :
Gaussian processes; edge detection; expectation-maximisation algorithm; image colour analysis; image segmentation; EM algorithm; color features; edge information; image segmentation; natural images; patch-based information; probabilistic Gaussian mixture framework; spatial features; Brightness; Context modeling; Image edge detection; Image processing; Image resolution; Image segmentation; Jacobian matrices; Noise generators; Partitioning algorithms; Pixel;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision and Pattern Recognition, 2007. CVPR '07. IEEE Conference on
Conference_Location :
Minneapolis, MN
ISSN :
1063-6919
Print_ISBN :
1-4244-1179-3
Electronic_ISBN :
1063-6919
Type :
conf
DOI :
10.1109/CVPR.2007.383232
Filename :
4270257
Link To Document :
بازگشت