Title :
A simple learning strategy for high-speed quadrocopter multi-flips
Author :
Lupashin, Sergei ; Schöllig, Angela ; Sherback, Michael ; D´Andrea, Raffaello
Author_Institution :
Inst. for Dynamic Syst. & Control (IDSC), ETH Zurich, Zurich, Switzerland
Abstract :
We describe a simple and intuitive policy gradient method for improving parametrized quadrocopter multi-flips by combining iterative experiments with information from a first-principles model. We start by formulating an N-flip maneuver as a five-step primitive with five adjustable parameters. Optimization using a low-order first-principles 2D vertical plane model of the quadrocopter yields an initial set of parameters and a corrective matrix. The maneuver is then repeatedly performed with the vehicle. At each iteration the state error at the end of the primitive is used to update the maneuver parameters via a gradient adjustment. The method is demonstrated at the ETH Zurich Flying Machine Arena testbed on quadrotor helicopters performing and improving on flips, double flips and triple flips.
Keywords :
gradient methods; helicopters; learning (artificial intelligence); matrix algebra; optimisation; position control; ETH Zurich Flying Machine Arena testbed; N-flip maneuver; corrective matrix; five adjustable parameters; gradient adjustment; high-speed quadrocopter multiflips; iterative experiments; low-order first-principles 2D vertical plane model; maneuver parameters; optimization; parametrized quadrocopter multiflips; policy gradient method; quadrotor helicopters; simple learning strategy; state error; Aerodynamics; Design methodology; Error correction; Gradient methods; Helicopters; Iterative methods; Jacobian matrices; Robotics and automation; USA Councils; Vehicle dynamics;
Conference_Titel :
Robotics and Automation (ICRA), 2010 IEEE International Conference on
Conference_Location :
Anchorage, AK
Print_ISBN :
978-1-4244-5038-1
Electronic_ISBN :
1050-4729
DOI :
10.1109/ROBOT.2010.5509452