DocumentCode :
3018998
Title :
Lower Bounds for DNF-refutations of a Relativized Weak Pigeonhole Principle
Author :
Atserias, Albert ; Muller, Mathias ; Oliva, S.
Author_Institution :
Univ. Polit`ecnica de Catalunya, Barcelona, Spain
fYear :
2013
fDate :
5-7 June 2013
Firstpage :
109
Lastpage :
120
Abstract :
The relativized weak pigeonhole principle states that if at least 2n out of n2 pigeons fly into n holes, then some hole must be doubly occupied. We prove that every DNF-refutation of the CNF encoding of this principle requires size 2((log n)3/2-ε) for every ϵ > 0 and every sufficiently large n. For its proof we need to discuss the existence of unbalanced low-degree bipartite expanders satisfying a certain robustness condition.
Keywords :
computational complexity; theorem proving; CNF encoding; DNF-refutations; lower bounds; relativized weak pigeonhole principle; Bipartite graph; Complexity theory; Decision trees; Encoding; Random variables; Standards;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Complexity (CCC), 2013 IEEE Conference on
Conference_Location :
Stanford, CA
Type :
conf
DOI :
10.1109/CCC.2013.20
Filename :
6597754
Link To Document :
بازگشت