DocumentCode :
3020186
Title :
The construction of trivariate nonseparable compactly supported wavelets with a class of special dilation matrix
Author :
Huang, Yong-Dong ; Zhu, Feng-Juan ; Cheng, Zheng-Xing
Author_Institution :
Inst. of Inf. & Syst. Sci., North Univ. for Nat., Yinchuan, China
fYear :
2009
fDate :
12-15 July 2009
Firstpage :
402
Lastpage :
407
Abstract :
In this paper, under a mild condition, the construction of compactly supported (2, 2, 1: -1, -1, 0: -1, -3, -1)-wavelets is obtained. Wavelets inherits the symmetry of the corresponding scaling function and satisfies the vanishing moment condition originating in the symbols of the scaling function. One example is also given to demonstrate the general theory.
Keywords :
matrix algebra; signal processing; wavelet transforms; multidimensional signals processing; multivariate wavelets analysis; scaling function; special dilation matrix; vanishing moment condition; Pattern analysis; Pattern recognition; Wavelet analysis; Riesz basis; scaling function; symmetric; vanishing moment; wavelets;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Wavelet Analysis and Pattern Recognition, 2009. ICWAPR 2009. International Conference on
Conference_Location :
Baoding
Print_ISBN :
978-1-4244-3728-3
Electronic_ISBN :
978-1-4244-3729-0
Type :
conf
DOI :
10.1109/ICWAPR.2009.5207451
Filename :
5207451
Link To Document :
بازگشت