DocumentCode :
3021553
Title :
Hybrid generative/discriminative scene classification strategy based on latent dirichlet allocation for high spatial resolution remote sensing imagery
Author :
Bei Zhao ; Yanfei Zhong ; Liangpei Zhang
Author_Institution :
State Key Lab. of Inf. Eng. in Surveying, Mapping, & Remote Sensing, Wuhan Univ., Wuhan, China
fYear :
2013
fDate :
21-26 July 2013
Firstpage :
196
Lastpage :
199
Abstract :
In order to capture the high-level concepts in high spatial resolution remote sensing (HSR) imagery, scene classification based on a latent Dirichlet allocation (LDA) model, a generative topic model, is a practical method to bridge the semantic gaps between the low-level features and the high-level concepts of HSR imagery. In the previous work, LDA has been considered as a scene classifier, namely C-LDA, and multiple LDA models for each scene class are built separately, where the scene class is determined by a maximum likelihood rule. The C-LDA strategy disregards the correlations between the generative topic spaces of the different scene classes. In this paper, two novel strategies of scene classification based on LDA are proposed to consider the correlations between the generative topic spaces of the different scene classes by sharing the topic spaces for all the scene classes. One of the proposed strategies utilizes LDA as part of the classifier, namely P-LDA, which generates the topic space from all the training images. A discriminative classifier (e.g., support vector machine, SVM) is also employed as the other classification part of P-LDA. The other proposed strategy employs LDA as the topic feature extractor, namely F-LDA, which generates the topic space from all the training and test images, and utilizes a discriminative classifier to classify the topic features. The experimental results using aerial orthophotographs show that the performances of the two proposed strategies for scene classification based on LDA are better than the traditional C-LDA method.
Keywords :
pattern classification; remote sensing; aerial orthophotographs; discriminative classifier; generative topic model; high spatial resolution remote sensing imagery; hybrid generative/discriminative scene classification strategy; latent Dirichlet allocation; maximum likelihood rule; topic feature extractor; Accuracy; Feature extraction; Hybrid power systems; Remote sensing; Semantics; Support vector machines; Training; High spatial resolution remote sensing imagery; discriminative model; generative model; latent Dirichlet allocation; scene classification; topic space;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Geoscience and Remote Sensing Symposium (IGARSS), 2013 IEEE International
Conference_Location :
Melbourne, VIC
ISSN :
2153-6996
Print_ISBN :
978-1-4799-1114-1
Type :
conf
DOI :
10.1109/IGARSS.2013.6721125
Filename :
6721125
Link To Document :
بازگشت