Title :
Decay of the solution of the nonlinear Kortewey de Vries-Benjamin Ono Burgers equation
Author :
Wang, Sanwu ; Liu, Rong
Author_Institution :
Coll. of Sci., Shaanxi Univ. of Sci. & Technol., Xi´´an, China
Abstract :
In this paper, we study the asymptotic behavior of the solution to Korteweg de Vries-Benjamin Ono Burgers (Kdv-Bob) equation . It will be proved that L2 and L∞ norms of the solution tend to zero at certain decay rates as t → ∞, which follow the prior L2 integral estimates and Fourier transform. The standard argument relies on a technique that involves the splitting of the space into time-dependent subdomains.
Keywords :
Fourier transforms; Korteweg-de Vries equation; nonlinear differential equations; partial differential equations; Fourier transform; asymptotic behavior; decay rates; nonlinear Korteweg de Vries-Benjamin Ono Burgers equation; time-dependent subdomains; Differential equations; Educational institutions; Equations; Fourier transforms; Propagation; Water conservation; Fourier transform; Kdv-Bob equation; decay; splitting method;
Conference_Titel :
Multimedia Technology (ICMT), 2011 International Conference on
Conference_Location :
Hangzhou
Print_ISBN :
978-1-61284-771-9
DOI :
10.1109/ICMT.2011.6001708