DocumentCode :
30227
Title :
Optimal Minimum Variance Distortionless Precoding (MVDP) for Decentralized Estimation in MIMO Wireless Sensor Networks
Author :
Venkategowda, Naveen K. D. ; Jagannatham, Aditya K.
Author_Institution :
Dept. of Electr. Eng., Indian Inst. of Technol. Kanpur, Kanpur, India
Volume :
22
Issue :
6
fYear :
2015
fDate :
Jun-15
Firstpage :
696
Lastpage :
700
Abstract :
In this letter, we present a framework for optimal minimum variance distortionless precoder (MVDP) design towards decentralized estimation of a vector parameter in a coherent multiple access channel based multiple-input multiple-output (MIMO) wireless sensor network. The proposed MVDP scheme yields the optimal minimum variance distortionless parameter estimate at the fusion center without the necessity of any receive processing. A closed form expression is derived for the mean square estimation error of the MVDP and it is demonstrated that it asymptotically achieves the centralized minimum mean square error bound. Further, we derive the optimal decentralized estimation schemes with a total network power constraint (MVDP-T) and per-sensor power constraint (MVDP-P). Simulation results demonstrate the performance of the proposed optimal precoding schemes and also support the analytical results derived.
Keywords :
MIMO communication; mean square error methods; multi-access systems; parameter estimation; precoding; wireless sensor networks; MVDP scheme; MVDP-P; MVDP-T; centralized minimum mean square error bound; coherent multiple-access channel-based MIMO wireless sensor network; fusion center; multiple-input multiple-output wireless sensor network; optimal MVDP design; optimal decentralized estimation scheme; optimal minimum variance distortionless precoding; per-sensor power constraint; total network power constraint; vector parameter; Bismuth; Covariance matrices; Estimation; MIMO; Symmetric matrices; Vectors; Wireless sensor networks; Decentralized estimation; MIMO wireless sensor networks; distributed sensing; optimal precoding;
fLanguage :
English
Journal_Title :
Signal Processing Letters, IEEE
Publisher :
ieee
ISSN :
1070-9908
Type :
jour
DOI :
10.1109/LSP.2014.2368253
Filename :
6949105
Link To Document :
بازگشت