DocumentCode :
3026032
Title :
A Simple and Efficient Method for Fault Diagnosis Using Time Series Data Mining
Author :
Aydin, I. ; Karaköse, M. ; Akin, E.
Author_Institution :
Erzincan Univ., Erzincan
Volume :
1
fYear :
2007
fDate :
3-5 May 2007
Firstpage :
596
Lastpage :
600
Abstract :
Early detection and diagnosis of incipient faults is desirable for online condition evaluation and improved operational efficiency of induction motors. A classification technique based on time series data mining is developed to detect broken rotor bar faults in induction motors. The proposed algorithm uses only stator phase currents as input without the need for any other signals. The stator phase currents are transformed to park´s vector components and a new feature vector is constituted by using these components. The phase space of constituted feature vector is constructed according to determined time delay and embedding dimension for each motor conditions. Each motor condition is separated to two clusters by using fuzzy c-means clustering algorithm. The center points of these clusters are saved for test phase. A Gaussian membership function is used for that a point is the degree of belonging to a cluster. The current signals of a three phase induction motor are derived an actual experimental setup. A healthy induction motor and one, two and three broken rotor bar faults are classified under four different operation speed. Experimental results show the strength of the proposed method.
Keywords :
data mining; fault diagnosis; fuzzy set theory; induction motors; rotors; stators; fault diagnosis; fuzzy c-means clustering; induction motors; online condition evaluation; operational efficiency; rotor bar faults; stator phase currents; time series data mining; Bars; Chemical industry; Computer science education; Data mining; Educational programs; Fault detection; Fault diagnosis; Induction motors; Rotors; Stators; Time series data mining; broken rotor bar faults; fault detection and diagnosis; fuzzy c-means clustering; induction motors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Electric Machines & Drives Conference, 2007. IEMDC '07. IEEE International
Conference_Location :
Antalya
Print_ISBN :
1-4244-0742-7
Electronic_ISBN :
1-4244-0743-5
Type :
conf
DOI :
10.1109/IEMDC.2007.382734
Filename :
4270707
Link To Document :
بازگشت