• DocumentCode
    3026879
  • Title

    The spectral-spatial classification of hyperspectral images based on Hidden Markov Random Field and its Expectation-Maximization

  • Author

    Ghamisi, Pedram ; Benediktsson, Jon Atli ; Ulfarsson, Magnus Orn

  • Author_Institution
    Univ. of Iceland, Reykjavik, Iceland
  • fYear
    2013
  • fDate
    21-26 July 2013
  • Firstpage
    1107
  • Lastpage
    1110
  • Abstract
    In this work, a new framework for accurate classification of hyperspectral images is proposed. The new method is based on Hidden Markov Random Field and its Expectation Maximization (HMRF-EM) and Support Vector Machine (SVM) classifier. In order to preserve edges in final map, the Sobel edge detector is used. Result confirms that the combination of the spectral and spatial information can significantly improve results compared to the standard SVM method.
  • Keywords
    edge detection; expectation-maximisation algorithm; hidden Markov models; hyperspectral imaging; image classification; support vector machines; HMRF-EM; SVM classifier; Sobel edge detector; edge preservation; expectation-maximization; hidden Markov random field; hyperspectral images; spatial information; spectral information; spectral-spatial classification; support vector machine; Accuracy; Hidden Markov models; Hyperspectral imaging; Image edge detection; Image segmentation; Support vector machines; Hidden Markov Random Field; hyperspectral image analysis; image segmentation;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Geoscience and Remote Sensing Symposium (IGARSS), 2013 IEEE International
  • Conference_Location
    Melbourne, VIC
  • ISSN
    2153-6996
  • Print_ISBN
    978-1-4799-1114-1
  • Type

    conf

  • DOI
    10.1109/IGARSS.2013.6721358
  • Filename
    6721358