Title :
Joining a carbon nanotube and a graphene sheet
Author :
Baowan, Duangkamon ; Cox, Barry J. ; Hill, James M.
Author_Institution :
Sch. of Math. & Appl. Stat., Wollongong Univ., Wollongong, NSW
Abstract :
This paper is a synopsis of the two least squares approaches developed in the work of Baowan et al. (2007) for the perpendicular joining of a flat graphene sheet with a carbon nanotube. The two least squares approaches are the variation in the bond length and the variation in the bond angle. These are used to examine the joined structure of a zigzag (8,0) carbon nanotube with a flat graphene sheet. There are sixteen possible distinct defects corresponding to the number of atoms at the (8,0) tube open end, and therefore, in total sixteen joining structures need to be investigated. Moreover, the polygons that occur at the junction are determined and are shown to be consistent with Eulerpsilas theorem. Assuming that only pentagons, hexagons and heptagons are acceptable, the number of possible structures is greatly reduced, but there is only one structure that is physically meaningful. These purely geometrical approaches can be formally related directly to a certain numerical energy minimization method used by a number of authors (Cornell et al., 1995).
Keywords :
bonds (chemical); carbon; carbon nanotubes; (8,0) tube open end; C-C; Euler theorem; defects; energy minimization method; graphene sheet; joining structures; zigzag (8,0) carbon nanotube; Australia; Bonding; Carbon nanotubes; Chemical technology; Least squares methods; Mathematical model; Mathematics; Minimization methods; Nanostructures; Statistics; Carbon nanotube; Graphene sheet; Joining nanostructures; Variation in bond angle; Variation in bond length; component;
Conference_Titel :
Nanoscience and Nanotechnology, 2008. ICONN 2008. International Conference on
Conference_Location :
Melbourne, Vic.
Print_ISBN :
978-1-4244-1503-8
Electronic_ISBN :
978-1-4244-1504-5
DOI :
10.1109/ICONN.2008.4639231