Title :
Binomial parameter estimation with nonignorable missing data
Author_Institution :
Sch. of Sci., Beijing Univ. of Posts & Telecommun., Beijing, China
Abstract :
When an observation of a binomial distribution suffers missing data from a nonignorable nonresponse mechanism, the binomial distribution parameters becomes to be unidentifiable without any other auxiliary information or assumption. To address the problems of non-identifiability, existing methods mostly based on the log-linear regression model. In this article, we consider to use the auxiliary data to improve identifiability, further we derive the maximum likelihood estimator(MLE) for the binommial proportion and its associated variance, the simulation study shows that the proposed method gives promising results.
Keywords :
data analysis; maximum likelihood estimation; polynomials; regression analysis; binomial distribution parameter; binomial parameter estimation; binomial proportion; log-linear regression model; maximum likelihood estimator; nonignorable missing data; nonignorable nonresponse mechanism; Correlation; Data models; Mathematical model; Maximum likelihood estimation; Simulation; Stochastic processes; information matrix; nonignorable nonresponse; odds ratio; variance estimator;
Conference_Titel :
Multimedia Technology (ICMT), 2011 International Conference on
Conference_Location :
Hangzhou
Print_ISBN :
978-1-61284-771-9
DOI :
10.1109/ICMT.2011.6002231