• DocumentCode
    3033397
  • Title

    Stability of constrained linear moving horizon estimation

  • Author

    Rao, Christopher V. ; Rawlings, James B. ; Lee, Jay H.

  • Author_Institution
    Dept. of Chem. Eng., Wisconsin Univ., Madison, WI, USA
  • Volume
    5
  • fYear
    1999
  • fDate
    1999
  • Firstpage
    3387
  • Abstract
    We derive sufficient conditions for the stability of moving horizon state estimation with linear models subject to constraints on the estimate. The key result is that if the time-varying or steady-state Kalman filter covariance update is used to summarize the prior data, then the estimator is stable in the sense of an observer, even in the presence of constraints
  • Keywords
    Kalman filters; discrete time systems; dynamic programming; linear systems; observers; stability; Kalman filter; discrete time systems; dynamic programming; linear models; linear time invariant systems; moving horizon estimation; observer; stability; state estimation; sufficient conditions; Chemical engineering; Linear systems; Measurement standards; Observers; Random variables; Stability; State estimation; Steady-state; Sufficient conditions; Time varying systems;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    American Control Conference, 1999. Proceedings of the 1999
  • Conference_Location
    San Diego, CA
  • ISSN
    0743-1619
  • Print_ISBN
    0-7803-4990-3
  • Type

    conf

  • DOI
    10.1109/ACC.1999.782393
  • Filename
    782393