Title :
High density 3D LSI technology using W/Cu hybrid TSVs
Author :
Murugesan, M. ; Kino, H. ; Hashiguchi, A. ; Miyazaki, C. ; Shimamoto, H. ; Kobayashi, H. ; Fukushima, T. ; Tanaka, T. ; Koyanagi, M.
Author_Institution :
NICHe, New Ind. Creation Hatchery Center, Japan
Abstract :
High density 3D LSI technology using W/Cu hybrid through silicon vias (TSVs) has been proposed. Major reliability issues attributed to W/Cu hybrid TSVs in high density 3D LSIs such as (i) thermo-mechanical stress exerted by W TSVs used for signal lines and Cu TSVs used for power/ground lines in active Si, (ii) external gettering (EG) role played by sub-surface defects in thinned Si substrate, and (iii) effect of local stress induced by μ-bumps on device characteristics are discussed. By annealing at the temperature of ≥300°C, both Cu (via size ≤10μm) and W (via size ≤1μm) square TSVs induce only compressive stress at small TSV spacing which will seriously affect the mobility in active Si area, and thus device characteristics. Large compressive stress not only leads to extrusion and peeling of TSV metal, but also die cracking, and it will adversely impact on the reliability of 3D-LSIs. Then it was proposed to increase the TSV pitch to larger than twice of TSV size to avoid these adverse effects in high density 3D-LSI. Sub-surface defects at dry polished (DP) surface well act as potential EG sites for Cu contamination. Influences of mechanical stress induced by μ-bumps on device characteristics were also evaluated and ultra-small size In-Au μ-bump technology has been developed to minimize the influences of μ-bumps on device characteristics.
Keywords :
annealing; copper; hybrid integrated circuits; integrated circuit reliability; large scale integration; thermal stresses; three-dimensional integrated circuits; tungsten; 3D-LSI reliability; Si; TSV metal; TSV pitch; TSV spacing; W-Cu; active silicon area mobility affect; annealing; compressive stress; copper contamination; die cracking; dry polished surface; external gettering role; ground lines; high density 3D LSI technology; hybrid TSV; hybrid through silicon vias; microbumps; power lines; signal lines; subsurface defects; thermomechanical stress; Compressive stress; Copper; Large scale integration; Silicon; Substrates; Through-silicon vias;
Conference_Titel :
Electron Devices Meeting (IEDM), 2011 IEEE International
Conference_Location :
Washington, DC
Print_ISBN :
978-1-4577-0506-9
Electronic_ISBN :
0163-1918
DOI :
10.1109/IEDM.2011.6131503