DocumentCode :
3037309
Title :
Viscosity approximating fixed points of nonexpansive mappings by Ishikawa iteration
Author :
Wang, Yuanheng ; Xu, Wei
Author_Institution :
Dept. of Math., Zhejiang Normal Univ., Jinhua, China
fYear :
2011
fDate :
26-28 July 2011
Firstpage :
2797
Lastpage :
2800
Abstract :
It is shown that under some certain appropriate conditions, a strong convergence theorem of a new Ishikawa modified viscosity iteration for nonexpansive mappings is obtained in Banach spaces and the method in this paper is new ones. The results presented here improve and extend the corresponding results of other authors, such as S.S.Chang, H.W.Joseph Lee and C.K.Chan [On Reichs strong convergence theorem for asymptotically nonexpansive mappings in Banach spaces, J.Math.Anal.Appl.66:2364-2374,2007].
Keywords :
Banach spaces; convergence of numerical methods; iterative methods; Banach space; Ishikawa modified viscosity iteration; convergence theorem; nonexpansive mapping; viscosity approximating fixed points; Approximation methods; Convergence; Topology; Viscosity; Ishikawa modified iteration; nonexpansive mapping; strong convergence; viscosity;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Multimedia Technology (ICMT), 2011 International Conference on
Conference_Location :
Hangzhou
Print_ISBN :
978-1-61284-771-9
Type :
conf
DOI :
10.1109/ICMT.2011.6002430
Filename :
6002430
Link To Document :
بازگشت