DocumentCode :
3038464
Title :
Robust final prediction error criterion for control oriented models validation using L2 − L1 norm
Author :
Corbier, C. ; Carmona, Josep
Author_Institution :
Labs. des Sci. de l´Inf. et des Syst., ENSAM, Aix-en-Provence, France
fYear :
2012
fDate :
6-8 Dec. 2012
Firstpage :
1
Lastpage :
6
Abstract :
This paper presents a robust final prediction error criterion (RFPE) for Black-box pseudolinear model structure based on the Huber´s ρ-norm. In order to deal with large and numerous atypical data named outliers in the prediction error, the tuning constant in the p-norm is extended. Since the large prediction errors strongly disturb the normal distribution, we adopt the gross error model (GEM) as the corrupted distribution model of these errors. We present a robust final prediction error criterion to the Output Error (OE) models validation. Simulation results are given to get the estimated orders from the new criterion.
Keywords :
error statistics; normal distribution; parameter estimation; prediction theory; tuning; Black-box pseudolinear model structure; GEM; Huber ρ-norm; L2-L1 norm; RFPE; control oriented model validation; distribution robust model; gross error model; normal distribution; output error model validation; robust final prediction error criterion; tuning constant; Complexity theory; Estimation; Mathematical model; Noise; Predictive models; Robustness; Tuning; Gross error model; OE model; RFPE; outliers; system identification; validation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Communications, Computing and Control Applications (CCCA), 2012 2nd International Conference on
Conference_Location :
Marseilles
Print_ISBN :
978-1-4673-4694-8
Type :
conf
DOI :
10.1109/CCCA.2012.6417883
Filename :
6417883
Link To Document :
بازگشت