DocumentCode :
3039465
Title :
Bifurcations and exact traveling wave solutions of nonlinear Schrödinger equation
Author :
Zheng-hui, Gao ; Li-ping, Luo ; Liu, Yang
Author_Institution :
Dept. of Math. & Comput. Sci., Hengyang Normal Univ., Hengyang, China
fYear :
2011
fDate :
26-28 July 2011
Firstpage :
5756
Lastpage :
5759
Abstract :
Bifurcation phase portraits of traveling wave solution for nonlinear Schrodinger equation are given by using bifurcation theory of dynamical systems. Parametric representations of some exact traveling wave solutions of nonlinear Schrodinger equation are obtained.
Keywords :
Schrodinger equation; bifurcation; nonlinear equations; Nonlinear Schrodinger equation; bifurcation theory; bifurcations phase portraits; nonlinear dynamical systems; traveling wave solutions; Bifurcation; Presses; Propagation; Scientific computing; bifurcation phase portrait; exact traveling wave solution; nonlinear Schrödinger equation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Multimedia Technology (ICMT), 2011 International Conference on
Conference_Location :
Hangzhou
Print_ISBN :
978-1-61284-771-9
Type :
conf
DOI :
10.1109/ICMT.2011.6002536
Filename :
6002536
Link To Document :
بازگشت