• DocumentCode
    3040967
  • Title

    Tracking properties of adaptive signal processing algorithms

  • Author

    Farden, David C. ; Sayood, Khalid

  • Author_Institution
    The University of Rochester, Rochester, New York
  • Volume
    5
  • fYear
    1980
  • fDate
    29312
  • Firstpage
    466
  • Lastpage
    469
  • Abstract
    Adaptive signal processing algorithms are often used in order to "track" an unknown time-varying parameter vector. Such algorithms are typically some form of stochastic gradient-descent algorithm. The Widrow LMS algorithm is apparently the most frequently used. This work develops an upper bound on the norm-squared error between the parameter vector being tracked and the value obtained by the algorithm. The upper bound illustrates the relationship between the algorithm step-size and the maximum rate of variation in the parameter vector. Finally, some simple covariance decay-rate conditions are imposed to obtain a bound on the mean square error.
  • Keywords
    Adaptive signal processing; Eigenvalues and eigenfunctions; Mean square error methods; Signal processing algorithms; Steady-state; Stochastic processes; Symmetric matrices; Training data; Upper bound;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP '80.
  • Type

    conf

  • DOI
    10.1109/ICASSP.1980.1170938
  • Filename
    1170938