Title :
A Novel Medical Image Segmentation Method using Dynamic Programming
Author :
Yan Zhang ; Matuszewski, Bogdan J. ; Lik-Kwan Shark ; Moore, C.J.
Author_Institution :
Univ. of Central Lancashire, Preston
Abstract :
A novel method is proposed to segment objects in medical images whose boundaries can be described as closed curves. Based on an image with the enhanced boundary of an object of interest, the segmentation method consists of three key steps, namely, the polar transformation, dynamic programming and curve fitting. A 3D object in volumetric data can be segmented on a slice-by-slice basis by only specifying one point inside the 3D object of interest as the pole for the polar transformation. The method is also shown to be able to segment objects with very weak boundaries.
Keywords :
curve fitting; dynamic programming; image segmentation; medical image processing; 3D object; curve fitting; dynamic programming; medical image segmentation method; polar transformation; volumetric data; Active contours; Biomedical imaging; Curve fitting; Dynamic programming; Image segmentation; Law; Legal factors; Pixel; Signal processing; Visualization;
Conference_Titel :
Medical Information Visualisation - BioMedical Visualisation, 2007. MediVis 2007. International Conference on
Conference_Location :
Zurich
Print_ISBN :
0-7695-2904-6
DOI :
10.1109/MEDIVIS.2007.2