• DocumentCode
    304452
  • Title

    Fractal analysis of self-similar textures using a Fourier-domain maximum likelihood estimation method

  • Author

    Wen, C.-Y. ; Acharya, R.

  • Author_Institution
    Dept. of Electr. & Comput. Eng., State Univ. of New York, Buffalo, NY, USA
  • Volume
    1
  • fYear
    1996
  • fDate
    16-19 Sep 1996
  • Firstpage
    165
  • Abstract
    Fractional Brownian motion has been used to model self-similar textures. While using the fractal model, the most important procedure is measuring the Hurst parameter H, which is directly related to the fractal dimension. A maximum likelihood estimator has been applied to estimate the Hurst parameter H on a self-similar texture image. Much of the work done so far has concentrated in the spatial domain. In this paper, we propose an approximate MLE method for estimating H in the Fourier domain. The proposed Fourier-domain MLE method saves computational time, as the spatial-domain MLE needs extensive computations to obtain an inverse matrix. We use synthetic fractal datasets and a human tibia image to study the performance of our method
  • Keywords
    Brownian motion; biomedical NMR; computational complexity; discrete Fourier transforms; fractals; image texture; maximum likelihood estimation; medical image processing; Fourier domain; Hurst parameter estimation; MLE method; MRI image; computational time; fractal analysis; fractal dimension; fractional Brownian motion; human tibia image; inverse matrix; maximum likelihood estimation method; self-similar image textures; synthetic fractal datasets; Brownian motion; Covariance matrix; Discrete Fourier transforms; Fourier transforms; Fractals; Gaussian noise; Humans; Image texture analysis; Maximum likelihood estimation; Parameter estimation;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Image Processing, 1996. Proceedings., International Conference on
  • Conference_Location
    Lausanne
  • Print_ISBN
    0-7803-3259-8
  • Type

    conf

  • DOI
    10.1109/ICIP.1996.559459
  • Filename
    559459