DocumentCode :
3044842
Title :
Universal data compression and linear prediction
Author :
Feder, Meir ; Singer, Andrew C.
Author_Institution :
Dept. of Electr. Eng., Tel Aviv Univ., Israel
fYear :
1998
fDate :
30 Mar-1 Apr 1998
Firstpage :
511
Lastpage :
520
Abstract :
The relationship between prediction and data compression can be extended to universal prediction schemes and universal data compression. Previous work shows that minimizing the sequential squared prediction error for individual sequences can be achieved using the same strategies which minimize the sequential code length for data compression of individual sequences. Defining a “probability” as an exponential function of sequential loss, results from universal data compression can be used to develop universal linear prediction algorithms. Specifically, we present an algorithm for linear prediction of individual sequences which is twice-universal, over parameters and model orders
Keywords :
data compression; encoding; prediction theory; probability; sequences; exponential function; linear prediction; model order; probability; sequential code length; sequential loss; sequential squared prediction error; universal data compression; universal linear prediction algorithms; Autocorrelation; Data compression; Eigenvalues and eigenfunctions; Lattices; Prediction algorithms; Predictive models; Redundancy; Upper bound;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Data Compression Conference, 1998. DCC '98. Proceedings
Conference_Location :
Snowbird, UT
ISSN :
1068-0314
Print_ISBN :
0-8186-8406-2
Type :
conf
DOI :
10.1109/DCC.1998.672225
Filename :
672225
Link To Document :
بازگشت