Title :
A new implementation of discrete multiscale filtering
Author :
Zhao, Dongming ; Li, Bingcheng
Author_Institution :
Dept. of Electr. & Comput. Eng., Michigan Univ., Dearborn, MI, USA
Abstract :
In this paper, a conventional discrete implementation of the diffusion equation is analyzed. It is shown that when the evolution time step is less than ¼, the conventional discrete implementation satisfies the scale-space condition. As the evolution time increases, the image becomes smoother and smoother, thus making the evolution increasingly slow and the computing time lengthy. To solve this problem, a new discrete implementation is proposed. It is shown that the proposed implementation satisfies the scale-space condition when discrete time steps are arbitrarily large. The new discrete implementation of the diffusion equation not only preserves the scale-space condition but also effectively reduces the evolution time. The experiments in range image segmentation show that the proposed method has a similar segmentation effect as the conventional methods, but with much less computing time
Keywords :
convolution; diffusion; digital filters; discrete time filters; image segmentation; smoothing methods; computing time; diffusion equation; discrete multiscale filtering; evolution time step; range image segmentation; scale-space condition; Computational complexity; Convolution; Costs; Filtering; Finite difference methods; Gaussian processes; Image analysis; Image edge detection; Image sampling; Laplace equations;
Conference_Titel :
Image Processing, 1996. Proceedings., International Conference on
Conference_Location :
Lausanne
Print_ISBN :
0-7803-3259-8
DOI :
10.1109/ICIP.1996.559513