DocumentCode :
304580
Title :
Unsupervised contour estimation
Author :
Figueiredo, Mário A T ; Leitão, José M N
Author_Institution :
Dept. de Engenharia Electrotecnica e de Comput., Inst. Superior Tecnico, Lisbon, Portugal
Volume :
1
fYear :
1996
fDate :
16-19 Sep 1996
Firstpage :
821
Abstract :
We introduce a fully adaptive active contour model in which no parameters have to be set a priori or tuned by the user. It is based on elliptic Fourier contour description and on the minimum description length (MDL) principle. The proposed technique estimates all the observation model parameters (e.g., noise variances), the order of the contour description (number of Fourier coefficients), and the contour itself
Keywords :
Fourier series; adaptive estimation; edge detection; parameter estimation; Fourier coefficients; MDL; adaptive active contour model; algorithms; contour description; edge detection; elliptic Fourier contour description; minimum description length principle; noise variances; observation model parameters; parameter estimation; unsupervised contour estimation; Active contours; Bayesian methods; Computer vision; Deformable models; Fourier series; Frequency; Shape; Telecommunications;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing, 1996. Proceedings., International Conference on
Conference_Location :
Lausanne
Print_ISBN :
0-7803-3259-8
Type :
conf
DOI :
10.1109/ICIP.1996.559625
Filename :
559625
Link To Document :
بازگشت