DocumentCode :
3047514
Title :
Tracking Extrema in Dynamic Environments with Quantum-behaved Particle Swarm Optimization
Author :
Zhao, Ji ; Sun, Jun ; Chen, Wei ; Xu, Wenbo
Author_Institution :
Sch. of Inf. Technol., Jiangnan Univ., Wuxi, China
Volume :
2
fYear :
2009
fDate :
19-21 May 2009
Firstpage :
103
Lastpage :
108
Abstract :
This paper present a global searching performance algorithm - quantum-behaved particle swarm optimization (QPSO) algorithm applied to the complex dynamic environment. A number of experiments are performed to test the performance of the QPSO. The environments used in the experiments are generated by dynamic function # 1(DF1). The results of the experiments indicate that QPSO is more adaptive than particle swarm optimizer (PSO) in dynamic environment.
Keywords :
optimisation; search problems; DF1; complex dynamic environment; dynamic environments; dynamic function; extrema tracking; global searching performance algorithm; quantum-behaved particle swarm optimization algorithm; Birds; Convergence; Heuristic algorithms; Information technology; Intelligent systems; Particle swarm optimization; Particle tracking; Performance evaluation; Sun; Testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Systems, 2009. GCIS '09. WRI Global Congress on
Conference_Location :
Xiamen
Print_ISBN :
978-0-7695-3571-5
Type :
conf
DOI :
10.1109/GCIS.2009.205
Filename :
5209322
Link To Document :
بازگشت