DocumentCode :
3047515
Title :
An Improved Upperbound for (n, k, m) Systematic Convolutional Codes in Burst Erasure Channels
Author :
Deng, Huan ; Kuijper, Margreta ; Evans, Jamie S.
Author_Institution :
Dept. of Electr. & Electron. Eng., Univ. of Melbourne, Melbourne, VIC
fYear :
2009
fDate :
4-7 Feb. 2009
Firstpage :
33
Lastpage :
37
Abstract :
For (n, k, m) systematic convolutional polynomial encoders, there exists an upperbound on the length of a correctable burst of erasures in terms of code parameters by Arai et al. In this paper, we restrict ourselves to the burst-erasure correcting capabilities of (n, k, m) systematic convolutional polynomial encoders for m = fk - 1, where f is a natural number. We derive a new upperbound for systematic convolutional polynomial encoders with m = fk - 1 and show that it is tighter than Arai´s. In addition, we provide necessary and sufficient conditions for achieving the improved upperbound in terms of the encoder coefficients.
Keywords :
convolutional codes; burst erasure channels; polynomial encoders; systematic convolutional codes; Block codes; Convolutional codes; Error correction; Internet; Parallel processing; Polynomials; Sufficient conditions; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Communications Theory Workshop, 2009. AusCTW 2009. Australian
Conference_Location :
Sydney, NSW
Print_ISBN :
978-1-4244-3356-8
Electronic_ISBN :
978-1-4244-3357-5
Type :
conf
DOI :
10.1109/AUSCTW.2009.4805596
Filename :
4805596
Link To Document :
بازگشت